Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).
Google Scholar
Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).
Google Scholar
Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015).
Google Scholar
Dalum, S. & Hedegård, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019).
Google Scholar
Kiran, V. et al. Helicenes—a new class of organic spin filter. Adv. Mater. 28, 1957–1962 (2016).
Google Scholar
Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).
Google Scholar
Aragonès, A. C. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017).
Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).
Google Scholar
Gardner, M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds (Penguin Books, 1964).
Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).
Google Scholar
Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 124, 166602 (2020).
Google Scholar
Shiota, K. et al. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. Phys. Rev. Lett. 127, 126602 (2021).
Google Scholar
Sung, B., De La Cotte, A. & Grelet, E. Chirality-controlled crystallization via screw dislocations. Nat. Commun. 9, 1405 (2018).
Google Scholar
Ziv, A. et al. AFM-based spin-exchange microscopy using chiral molecules. Adv. Mater. 31, 1904206 (2019).
Google Scholar
Chen, Z. et al. Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. Nano Res. 15, 2741–2745 (2022).
Google Scholar
Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).
Google Scholar
Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).
Google Scholar
Yang, S. H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).
Geim, A. K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Google Scholar
Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
Google Scholar
Huang, L. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).
Google Scholar
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Google Scholar
Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).
Google Scholar
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).
Google Scholar
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Google Scholar
He, Q. et al. In-situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).
Google Scholar
Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2022).
Google Scholar
Meyer, S. F., Howard, R. E., Stewart, G. R., Acrivos, J. V. & Geballe, T. H. Properties of intercalated 2H-NbSe2, 4Hb-TaS2, and 1T-TaS2. J. Chem. Phys. 62, 4411–4419 (1974).
Google Scholar
Zong, P. A. et al. Flexible foil of hybrid TaS2/organic superlattice: fabrication and electrical properties. Small 16, 1901901 (2020).
Google Scholar
Nagelberg, A. S. & Worrell, W. L. A thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 29, 345–354 (1979).
Google Scholar
Peng, J. et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139, 9019–9025 (2017).
Google Scholar
Schöllhorn, R. & Weiss, A. Cation exchange reactions and layer solvate complexes of ternary phases MxMoS2. J. Less-Common Met. 36, 229–236 (1974).
Hovden, R. et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2). Proc. Natl Acad. Sci. USA 113, 11420–11424 (2016).
Google Scholar
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).
Google Scholar
Pan, J. et al. Enhanced superconductivity in restacked TaS2 nanosheets. J. Am. Chem. Soc. 139, 4623–4626 (2017).
Google Scholar
Wu, J. et al. Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140, 493–498 (2018).
Google Scholar
Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).
Google Scholar
Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).
Google Scholar
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
Google Scholar
Chua, R. et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater. 33, 2103360 (2021).
Google Scholar
Liu, T. et al. Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity. ACS Nano 14, 15983–15991 (2020).
Google Scholar
Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).
Google Scholar
Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).
Google Scholar
Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).
Google Scholar
Das, T. K., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. J. Phys. Chem. C 126, 3257–3264 (2022).
Google Scholar
Du, G. F., Fu, H. H. & Wu, R. Vibration-enhanced spin-selective transport of electrons in the DNA double helix. Phys. Rev. B 102, 35431 (2020).
Google Scholar
Fransson, J. Vibrational origin of exchange splitting and chiral-induced spin selectivity. Phys. Rev. B 102, 235416 (2020).
Google Scholar
Yildiz, A., Serin, N., Serin, T. & Kasap, M. Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 111203 (2009).
Google Scholar
Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
Google Scholar
Shang, C. H., Nowak, J., Jansen, R. & Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 58, R2917–R2920 (1998).
Google Scholar
Luxa, J. et al. 2H→1T phase engineering of layered tantalum disulfides in electrocatalysis: oxygen reduction reaction. Chem. Eur. J. 23, 8082–8091 (2017).
Google Scholar
Mishra, S. et al. Spin filtering along chiral polymers. Angew. Chem. Int. Ed. 59, 14671–14676 (2020).
Google Scholar
Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).
Google Scholar
Ghosh, K. B. et al. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C 123, 3024–3031 (2019).
Google Scholar
Mondal, A. K. et al. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents. J. Am. Chem. Soc. 143, 7189–7195 (2021).
Google Scholar
Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 9, 2025–2030 (2018).
Google Scholar
Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015).
Google Scholar
Mishra, D. et al. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc. Natl Acad. Sci. USA 110, 14872–14876 (2013).
Google Scholar
Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014).
Google Scholar
Mondal, P. C. et al. Chiral conductive polymers as spin filters. Adv. Mater. 27, 1924–1927 (2015).
Google Scholar
Varade, V. et al. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Phys. Chem. Chem. Phys. 20, 1091–1097 (2018).
Google Scholar
Sang, Y. et al. Temperature dependence of charge and spin transfer in azurin. J. Phys. Chem. C 125, 9875–9883 (2021).
Google Scholar
Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020).
Google Scholar
#Chiral #molecular #intercalation #superlattices #Nature