Chiral molecular intercalation superlattices – Nature

  • Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Dalum, S. & Hedegård, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kiran, V. et al. Helicenes—a new class of organic spin filter. Adv. Mater. 28, 1957–1962 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aragonès, A. C. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017).

    Google Scholar 

  • Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Gardner, M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds (Penguin Books, 1964).

  • Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 124, 166602 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shiota, K. et al. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. Phys. Rev. Lett. 127, 126602 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sung, B., De La Cotte, A. & Grelet, E. Chirality-controlled crystallization via screw dislocations. Nat. Commun. 9, 1405 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziv, A. et al. AFM-based spin-exchange microscopy using chiral molecules. Adv. Mater. 31, 1904206 (2019).

    CAS 

    Google Scholar 

  • Chen, Z. et al. Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. Nano Res. 15, 2741–2745 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Yang, S. H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Google Scholar 

  • Geim, A. K. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    PubMed 

    Google Scholar 

  • Huang, L. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    CAS 

    Google Scholar 

  • Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • He, Q. et al. In-situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2022).

    PubMed 

    Google Scholar 

  • Meyer, S. F., Howard, R. E., Stewart, G. R., Acrivos, J. V. & Geballe, T. H. Properties of intercalated 2H-NbSe2, 4Hb-TaS2, and 1T-TaS2. J. Chem. Phys. 62, 4411–4419 (1974).

    ADS 

    Google Scholar 

  • Zong, P. A. et al. Flexible foil of hybrid TaS2/organic superlattice: fabrication and electrical properties. Small 16, 1901901 (2020).

    CAS 

    Google Scholar 

  • Nagelberg, A. S. & Worrell, W. L. A thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 29, 345–354 (1979).

    ADS 
    CAS 

    Google Scholar 

  • Peng, J. et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139, 9019–9025 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Schöllhorn, R. & Weiss, A. Cation exchange reactions and layer solvate complexes of ternary phases MxMoS2. J. Less-Common Met. 36, 229–236 (1974).

    Google Scholar 

  • Hovden, R. et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2). Proc. Natl Acad. Sci. USA 113, 11420–11424 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Pan, J. et al. Enhanced superconductivity in restacked TaS2 nanosheets. J. Am. Chem. Soc. 139, 4623–4626 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, J. et al. Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 140, 493–498 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS 

    Google Scholar 

  • Chua, R. et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater. 33, 2103360 (2021).

    CAS 

    Google Scholar 

  • Liu, T. et al. Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity. ACS Nano 14, 15983–15991 (2020).

    PubMed 

    Google Scholar 

  • Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Das, T. K., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. J. Phys. Chem. C 126, 3257–3264 (2022).

    CAS 

    Google Scholar 

  • Du, G. F., Fu, H. H. & Wu, R. Vibration-enhanced spin-selective transport of electrons in the DNA double helix. Phys. Rev. B 102, 35431 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Fransson, J. Vibrational origin of exchange splitting and chiral-induced spin selectivity. Phys. Rev. B 102, 235416 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Yildiz, A., Serin, N., Serin, T. & Kasap, M. Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 111203 (2009).

    ADS 

    Google Scholar 

  • Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    ADS 

    Google Scholar 

  • Shang, C. H., Nowak, J., Jansen, R. & Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 58, R2917–R2920 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Luxa, J. et al. 2H→1T phase engineering of layered tantalum disulfides in electrocatalysis: oxygen reduction reaction. Chem. Eur. J. 23, 8082–8091 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, S. et al. Spin filtering along chiral polymers. Angew. Chem. Int. Ed. 59, 14671–14676 (2020).

    CAS 

    Google Scholar 

  • Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, K. B. et al. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C 123, 3024–3031 (2019).

    CAS 

    Google Scholar 

  • Mondal, A. K. et al. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents. J. Am. Chem. Soc. 143, 7189–7195 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 9, 2025–2030 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015).

    CAS 

    Google Scholar 

  • Mishra, D. et al. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc. Natl Acad. Sci. USA 110, 14872–14876 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014).

    ADS 

    Google Scholar 

  • Mondal, P. C. et al. Chiral conductive polymers as spin filters. Adv. Mater. 27, 1924–1927 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Varade, V. et al. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Phys. Chem. Chem. Phys. 20, 1091–1097 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Sang, Y. et al. Temperature dependence of charge and spin transfer in azurin. J. Phys. Chem. C 125, 9875–9883 (2021).

    CAS 

    Google Scholar 

  • Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020).

    CAS 

    Google Scholar 

  • #Chiral #molecular #intercalation #superlattices #Nature

    Leave a Comment

    Your email address will not be published.